Cargando…
Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing
The influence of cooling rate on the wear and antimicrobial performance of a Cu(52)Z(41)Al(7) (at. %) bulk metallic glass (BMG) composite was studied and the results compared to those of the annealed sample (850 °C for 48 h) and to pure copper. The aim of this basic research is to explore the potent...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459050/ https://www.ncbi.nlm.nih.gov/pubmed/28772866 http://dx.doi.org/10.3390/ma10050506 |
_version_ | 1783241890370420736 |
---|---|
author | Villapun, Victor Manuel Esat, Faye Bull, Steve Dover, Lynn George Gonzalez, Sergio |
author_facet | Villapun, Victor Manuel Esat, Faye Bull, Steve Dover, Lynn George Gonzalez, Sergio |
author_sort | Villapun, Victor Manuel |
collection | PubMed |
description | The influence of cooling rate on the wear and antimicrobial performance of a Cu(52)Z(41)Al(7) (at. %) bulk metallic glass (BMG) composite was studied and the results compared to those of the annealed sample (850 °C for 48 h) and to pure copper. The aim of this basic research is to explore the potential use of the material in preventing the spread of infections. The cooling rate is controlled by changing the mould diameter (2 mm and 3 mm) upon suction casting and controlling the mould temperature (chiller on and off). For the highest cooling rate conditions CuZr is formed but CuZr(2) starts to crystallise as the cooling rate decreases, resulting in an increase in the wear resistance and brittleness, as measured by scratch tests. A decrease in the cooling rate also increases the antimicrobial performance, as shown by different methodologies (European, American and Japanese standards). Annealing leads to the formation of new intermetallic phases (Cu(10)Zr(7) and Cu(2)ZrAl) resulting in maximum scratch hardness and antimicrobial performance. However, the annealed sample corrodes during the antimicrobial tests (within 1 h of contact with broth). The antibacterial activity of copper was proved to be higher than that of any of the other materials tested but it exhibits very poor wear properties. Cu-rich BMG composites with optimised microstructure would be preferable for some applications where the durability requirements are higher than the antimicrobial needs. |
format | Online Article Text |
id | pubmed-5459050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54590502017-07-28 Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing Villapun, Victor Manuel Esat, Faye Bull, Steve Dover, Lynn George Gonzalez, Sergio Materials (Basel) Article The influence of cooling rate on the wear and antimicrobial performance of a Cu(52)Z(41)Al(7) (at. %) bulk metallic glass (BMG) composite was studied and the results compared to those of the annealed sample (850 °C for 48 h) and to pure copper. The aim of this basic research is to explore the potential use of the material in preventing the spread of infections. The cooling rate is controlled by changing the mould diameter (2 mm and 3 mm) upon suction casting and controlling the mould temperature (chiller on and off). For the highest cooling rate conditions CuZr is formed but CuZr(2) starts to crystallise as the cooling rate decreases, resulting in an increase in the wear resistance and brittleness, as measured by scratch tests. A decrease in the cooling rate also increases the antimicrobial performance, as shown by different methodologies (European, American and Japanese standards). Annealing leads to the formation of new intermetallic phases (Cu(10)Zr(7) and Cu(2)ZrAl) resulting in maximum scratch hardness and antimicrobial performance. However, the annealed sample corrodes during the antimicrobial tests (within 1 h of contact with broth). The antibacterial activity of copper was proved to be higher than that of any of the other materials tested but it exhibits very poor wear properties. Cu-rich BMG composites with optimised microstructure would be preferable for some applications where the durability requirements are higher than the antimicrobial needs. MDPI 2017-05-06 /pmc/articles/PMC5459050/ /pubmed/28772866 http://dx.doi.org/10.3390/ma10050506 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Villapun, Victor Manuel Esat, Faye Bull, Steve Dover, Lynn George Gonzalez, Sergio Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing |
title | Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing |
title_full | Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing |
title_fullStr | Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing |
title_full_unstemmed | Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing |
title_short | Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing |
title_sort | tuning the mechanical and antimicrobial performance of a cu-based metallic glass composite through cooling rate control and annealing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459050/ https://www.ncbi.nlm.nih.gov/pubmed/28772866 http://dx.doi.org/10.3390/ma10050506 |
work_keys_str_mv | AT villapunvictormanuel tuningthemechanicalandantimicrobialperformanceofacubasedmetallicglasscompositethroughcoolingratecontrolandannealing AT esatfaye tuningthemechanicalandantimicrobialperformanceofacubasedmetallicglasscompositethroughcoolingratecontrolandannealing AT bullsteve tuningthemechanicalandantimicrobialperformanceofacubasedmetallicglasscompositethroughcoolingratecontrolandannealing AT doverlynngeorge tuningthemechanicalandantimicrobialperformanceofacubasedmetallicglasscompositethroughcoolingratecontrolandannealing AT gonzalezsergio tuningthemechanicalandantimicrobialperformanceofacubasedmetallicglasscompositethroughcoolingratecontrolandannealing |