Cargando…
Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm–Artificial Neural Network
This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm–artificial neural network (GA–ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can a...
Autores principales: | Ramadan Suleiman, Ahmed, Nehdi, Moncef L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459209/ https://www.ncbi.nlm.nih.gov/pubmed/28772495 http://dx.doi.org/10.3390/ma10020135 |
Ejemplares similares
-
Mixture Optimization of Recycled Aggregate Concrete Using Hybrid Machine Learning Model
por: Nunez, Itzel, et al.
Publicado: (2020) -
Estimating Compressive Strength of Concrete Using Neural Electromagnetic Field Optimization
por: Akbarzadeh, Mohammad Reza, et al.
Publicado: (2023) -
Predicting Ultra-High-Performance Concrete Compressive Strength Using Tabular Generative Adversarial Networks
por: Marani, Afshin, et al.
Publicado: (2020) -
Mechanical Behavior of Ultrahigh-Performance Concrete Tunnel Lining Segments
por: Abbas, Safeer, et al.
Publicado: (2021) -
Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm
por: Shah, Hammad Ahmed, et al.
Publicado: (2022)