Cargando…
Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction
Due to its high theoretical specific capacity, the lithium/sulfur battery is one of the most promising candidates for replacing current lithium-ion batteries. In this work, we investigate both chemical and morphological changes in the electrodes during cycling, by coupling operando spatially resolve...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459854/ https://www.ncbi.nlm.nih.gov/pubmed/28584237 http://dx.doi.org/10.1038/s41598-017-03004-4 |
Sumario: | Due to its high theoretical specific capacity, the lithium/sulfur battery is one of the most promising candidates for replacing current lithium-ion batteries. In this work, we investigate both chemical and morphological changes in the electrodes during cycling, by coupling operando spatially resolved X-ray diffraction and absorption tomography to characterize Li/S cells under real working conditions. By combining these tools, the state of the active material in the entire cell was correlated with its electrochemical behavior, leading to a deeper understanding of the performance limiting degradation phenomena in Li/S batteries. Highly heterogeneous behavior of lithium stripping/plating was observed in the anode, while the evolution of sulfur distribution in the cathode depth was followed during cycling. |
---|