Cargando…

Coherent control of the silicon-vacancy spin in diamond

Spin impurities in diamond have emerged as a promising building block in a wide range of solid-state-based quantum technologies. The negatively charged silicon-vacancy centre combines the advantages of its high-quality photonic properties with a ground-state electronic spin, which can be read out op...

Descripción completa

Detalles Bibliográficos
Autores principales: Pingault, Benjamin, Jarausch, David-Dominik, Hepp, Christian, Klintberg, Lina, Becker, Jonas N., Markham, Matthew, Becher, Christoph, Atatüre, Mete
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459988/
https://www.ncbi.nlm.nih.gov/pubmed/28555618
http://dx.doi.org/10.1038/ncomms15579
Descripción
Sumario:Spin impurities in diamond have emerged as a promising building block in a wide range of solid-state-based quantum technologies. The negatively charged silicon-vacancy centre combines the advantages of its high-quality photonic properties with a ground-state electronic spin, which can be read out optically. However, for this spin to be operational as a quantum bit, full quantum control is essential. Here we report the measurement of optically detected magnetic resonance and the demonstration of coherent control of a single silicon-vacancy centre spin with a microwave field. Using Ramsey interferometry, we directly measure a spin coherence time, T(2)*, of 115±9 ns at 3.6 K. The temperature dependence of coherence times indicates that dephasing and decay of the spin arise from single-phonon-mediated excitation between orbital branches of the ground state. Our results enable the silicon-vacancy centre spin to become a controllable resource to establish spin-photon quantum interfaces.