Cargando…

Network Analysis Reveals the Recognition Mechanism for Dimer Formation of Bulb-type Lectins

The bulb-type lectins are proteins consist of three sequential beta-sheet subdomains that bind to specific carbohydrates to perform certain biological functions. The active states of most bulb-type lectins are dimeric and it is thus important to elucidate the short- and long-range recognition mechan...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yunjie, Jian, Yiren, Liu, Zhichao, Liu, Hang, Liu, Qin, Chen, Chanyou, Li, Zhangyong, Wang, Lu, Huang, H. Howie, Zeng, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460271/
https://www.ncbi.nlm.nih.gov/pubmed/28588265
http://dx.doi.org/10.1038/s41598-017-03003-5
Descripción
Sumario:The bulb-type lectins are proteins consist of three sequential beta-sheet subdomains that bind to specific carbohydrates to perform certain biological functions. The active states of most bulb-type lectins are dimeric and it is thus important to elucidate the short- and long-range recognition mechanism for this dimer formation. To do so, we perform comparative sequence analysis for the single- and double-domain bulb-type lectins abundant in plant genomes. In contrast to the dimer complex of two single-domain lectins formed via protein-protein interactions, the double-domain lectin fuses two single-domain proteins into one protein with a short linker and requires only short-range interactions because its two single domains are always in close proximity. Sequence analysis demonstrates that the highly variable but coevolving polar residues at the interface of dimeric bulb-type lectins are largely absent in the double-domain bulb-type lectins. Moreover, network analysis on bulb-type lectin proteins show that these same polar residues have high closeness scores and thus serve as hubs with strong connections to all other residues. Taken together, we propose a potential mechanism for this lectin complex formation where coevolving polar residues of high closeness are responsible for long-range recognition.