Cargando…

Sphingosine kinase 1 expression enhances colon tumor growth

BACKGROUND: Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate pathway plays a pivotal role in colon carcinogenesis. METHODS: To further support the evidence, we investigated the effects of SphK1 using three separate animal models: SphK1 knockout mice, SphK1 ove...

Descripción completa

Detalles Bibliográficos
Autores principales: Furuya, Hideki, Shimizu, Yoshiko, Tamashiro, Paulette M., Iino, Kayoko, Bielawski, Jacek, Chan, Owen T. M., Pagano, Ian, Kawamori, Toshihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460497/
https://www.ncbi.nlm.nih.gov/pubmed/28583134
http://dx.doi.org/10.1186/s12967-017-1220-x
Descripción
Sumario:BACKGROUND: Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate pathway plays a pivotal role in colon carcinogenesis. METHODS: To further support the evidence, we investigated the effects of SphK1 using three separate animal models: SphK1 knockout mice, SphK1 overexpressing transgenic mice, and SphK1 overexpression in human colon cancer xenografts. Using azoxymethane (AOM, colon carcinogen), we analyzed colon tumor development in SphK1 KO and SphK1 overexpression in intestinal epithelial cells regulated by a tet-on system. Then, we analyzed subcutaneous tumor growth using xenografts of HT-29 human colon cancer cell. Finally, immunohistochemical analyses for SphK1 and COX-2 were performed on human colon cancer tissue microarray. RESULTS: SphK1 KO mice, compared to wild-type mice, demonstrated a significant inhibition in colon cancer development induced by AOM (58.6% vs. 96.4%, respectively, P < 0.005). Tumor multiplicity (1.00 vs. 1.64 per colon, respectively, P < 0.05) and tumor volume (14.82 mm(3) vs. 29.10 mm(3), P < 0.05) were both significantly reduced in SphK1 KO mice compared to wild-type mice. Next, SphK1 overexpression in HT-29 enhanced tumor growth as compared to GFP control in nude mice (229.5 mm(3) vs. 90.9 mm(3), respectively, P < 0.05). Furthermore, overexpression of SphK1 in intestinal epithelial cells significantly enhances AOM-induced colon tumor formation (P < 0.05). Lastly, SphK1 and COX-2 intensity tended to reduce overall survival of late stage colon cancer patients. CONCLUSIONS: SphK1 expression regulates the early stage of colon carcinogenesis and tumor growth, thus inhibition of SphK1 may be an effective strategy for colon cancer chemoprevention. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-017-1220-x) contains supplementary material, which is available to authorized users.