Cargando…
O-Benzyl Xanthate Esters under Ni/Photoredox Dual Catalysis: Selective Radical Generation and Csp(3)–Csp(2) Cross-Coupling
[Image: see text] Alkyl xanthate esters are perhaps best known for their use in deoxygenation chemistry. However, their use in cross-coupling chemistry has not been productive, which is due, in part, to inadequate xanthate activation strategies. Herein, we report the use of O-benzyl xanthate esters,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460664/ https://www.ncbi.nlm.nih.gov/pubmed/28603657 http://dx.doi.org/10.1021/acscatal.7b00772 |
Sumario: | [Image: see text] Alkyl xanthate esters are perhaps best known for their use in deoxygenation chemistry. However, their use in cross-coupling chemistry has not been productive, which is due, in part, to inadequate xanthate activation strategies. Herein, we report the use of O-benzyl xanthate esters, readily derived from alcohols, as radical pronucleophiles in Csp(3)–Csp(2) cross-couplings under Ni/photoredox dual catalysis. Xanthate (C–O) cleavage is found to be reliant on photogenerated (sec-butyl) radical activators to form new carbon-centered radicals primed for nickel-catalyzed cross-couplings. Mechanistic experiments support the fact that the key radical components are formed independently, and relative rates are carefully orchestrated, such that no cross reactivity is observed. |
---|