Cargando…
Multi-class cancer classification by total principal component regression (TPCR) using microarray gene expression data
DNA microarray technology provides a promising approach to the diagnosis and prognosis of tumors on a genome-wide scale by monitoring the expression levels of thousands of genes simultaneously. One problem arising from the use of microarray data is the difficulty to analyze the high-dimensional gene...
Autores principales: | Tan, Yongxi, Shi, Leming, Tong, Weida, Wang, Charles |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC546133/ https://www.ncbi.nlm.nih.gov/pubmed/15640445 http://dx.doi.org/10.1093/nar/gki144 |
Ejemplares similares
-
Principal component regression for crop yield estimation
por: Suryanarayana, T M V, et al.
Publicado: (2016) -
Permutation-validated principal components analysis of microarray data
por: Landgrebe, Jobst, et al.
Publicado: (2002) -
Component retention in principal component analysis with application to cDNA microarray data
por: Cangelosi, Richard, et al.
Publicado: (2007) -
Multi-TGDR: A Regularization Method for Multi-Class Classification in Microarray Experiments
por: Tian, Suyan, et al.
Publicado: (2013) -
Kernel-Free Quadratic Surface Regression for Multi-Class Classification
por: Wang, Changlin, et al.
Publicado: (2023)