Cargando…
Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461482/ https://www.ncbi.nlm.nih.gov/pubmed/28569742 http://dx.doi.org/10.1038/ncomms15529 |
_version_ | 1783242339901243392 |
---|---|
author | Rosi, G. D'Amico, G. Cacciapuoti, L. Sorrentino, F. Prevedelli, M. Zych, M. Brukner, Č. Tino, G. M. |
author_facet | Rosi, G. D'Amico, G. Cacciapuoti, L. Sorrentino, F. Prevedelli, M. Zych, M. Brukner, Č. Tino, G. M. |
author_sort | Rosi, G. |
collection | PubMed |
description | The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10(−9), improving previous results by almost two orders of magnitude. |
format | Online Article Text |
id | pubmed-5461482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-54614822017-06-13 Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states Rosi, G. D'Amico, G. Cacciapuoti, L. Sorrentino, F. Prevedelli, M. Zych, M. Brukner, Č. Tino, G. M. Nat Commun Article The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10(−9), improving previous results by almost two orders of magnitude. Nature Publishing Group 2017-06-01 /pmc/articles/PMC5461482/ /pubmed/28569742 http://dx.doi.org/10.1038/ncomms15529 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Rosi, G. D'Amico, G. Cacciapuoti, L. Sorrentino, F. Prevedelli, M. Zych, M. Brukner, Č. Tino, G. M. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states |
title | Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states |
title_full | Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states |
title_fullStr | Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states |
title_full_unstemmed | Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states |
title_short | Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states |
title_sort | quantum test of the equivalence principle for atoms in coherent superposition of internal energy states |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461482/ https://www.ncbi.nlm.nih.gov/pubmed/28569742 http://dx.doi.org/10.1038/ncomms15529 |
work_keys_str_mv | AT rosig quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates AT damicog quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates AT cacciapuotil quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates AT sorrentinof quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates AT prevedellim quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates AT zychm quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates AT bruknerc quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates AT tinogm quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates |