Cargando…

Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states

The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properti...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosi, G., D'Amico, G., Cacciapuoti, L., Sorrentino, F., Prevedelli, M., Zych, M., Brukner, Č., Tino, G. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461482/
https://www.ncbi.nlm.nih.gov/pubmed/28569742
http://dx.doi.org/10.1038/ncomms15529
_version_ 1783242339901243392
author Rosi, G.
D'Amico, G.
Cacciapuoti, L.
Sorrentino, F.
Prevedelli, M.
Zych, M.
Brukner, Č.
Tino, G. M.
author_facet Rosi, G.
D'Amico, G.
Cacciapuoti, L.
Sorrentino, F.
Prevedelli, M.
Zych, M.
Brukner, Č.
Tino, G. M.
author_sort Rosi, G.
collection PubMed
description The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10(−9), improving previous results by almost two orders of magnitude.
format Online
Article
Text
id pubmed-5461482
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54614822017-06-13 Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states Rosi, G. D'Amico, G. Cacciapuoti, L. Sorrentino, F. Prevedelli, M. Zych, M. Brukner, Č. Tino, G. M. Nat Commun Article The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10(−9), improving previous results by almost two orders of magnitude. Nature Publishing Group 2017-06-01 /pmc/articles/PMC5461482/ /pubmed/28569742 http://dx.doi.org/10.1038/ncomms15529 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Rosi, G.
D'Amico, G.
Cacciapuoti, L.
Sorrentino, F.
Prevedelli, M.
Zych, M.
Brukner, Č.
Tino, G. M.
Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
title Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
title_full Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
title_fullStr Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
title_full_unstemmed Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
title_short Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
title_sort quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461482/
https://www.ncbi.nlm.nih.gov/pubmed/28569742
http://dx.doi.org/10.1038/ncomms15529
work_keys_str_mv AT rosig quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates
AT damicog quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates
AT cacciapuotil quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates
AT sorrentinof quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates
AT prevedellim quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates
AT zychm quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates
AT bruknerc quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates
AT tinogm quantumtestoftheequivalenceprincipleforatomsincoherentsuperpositionofinternalenergystates