Cargando…
Inferring combinatorial regulation of transcription in silico
In this paper, we propose a functional view on the in silico prediction of transcriptional regulation. We present a method to predict biological functions regulated by a combinatorial interaction of transcription factors. Using a rigorous statistic, this approach intersects the presence of transcrip...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC546154/ https://www.ncbi.nlm.nih.gov/pubmed/15647509 http://dx.doi.org/10.1093/nar/gki167 |
Sumario: | In this paper, we propose a functional view on the in silico prediction of transcriptional regulation. We present a method to predict biological functions regulated by a combinatorial interaction of transcription factors. Using a rigorous statistic, this approach intersects the presence of transcription factor binding sites in gene upstream sequences with Gene Ontology terms associated with these genes. We demonstrate that for the well-studied set of skeletal muscle-related transcription factors Myf-2, Mef and TEF, the correct functions are predicted. Furthermore, starting from the well-characterized promoter of a gene expressed upon lipopolysaccharide stimulation, we predict functional targets of this stimulus. These results are in excellent agreement with microarray data. |
---|