Cargando…
A nonparametric multiple imputation approach for missing categorical data
BACKGROUND: Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. METHODS: We propose a nearest-neighbour multiple imputation approac...
Autores principales: | Zhou, Muhan, He, Yulei, Yu, Mandi, Hsu, Chiu-Hsieh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461637/ https://www.ncbi.nlm.nih.gov/pubmed/28587662 http://dx.doi.org/10.1186/s12874-017-0360-2 |
Ejemplares similares
-
Multiple imputation of missing data using SAS
por: Berglund, Patricia A, et al.
Publicado: (2014) -
Population‐calibrated multiple imputation for a binary/categorical covariate in categorical regression models
por: Pham, Tra My, et al.
Publicado: (2018) -
Multiple Imputation of Missing Complex Survey Data using SAS(®): A Brief Overview and An Example Based on the Research and Development Survey (RANDS)
por: He, Yulei, et al.
Publicado: (2023) -
Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
por: Xiong, Sihan, et al.
Publicado: (2018) -
Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data
por: Vidotto, Davide, et al.
Publicado: (2018)