Cargando…
Meta-analysis of cell- specific transcriptomic data using fuzzy c-means clustering discovers versatile viral responsive genes
BACKGROUND: Despite advances in the gene-set enrichment analysis methods; inadequate definitions of gene-sets cause a major limitation in the discovery of novel biological processes from the transcriptomic datasets. Typically, gene-sets are obtained from publicly available pathway databases, which c...
Autores principales: | Khan, Atif, Katanic, Dejan, Thakar, Juilee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461682/ https://www.ncbi.nlm.nih.gov/pubmed/28587632 http://dx.doi.org/10.1186/s12859-017-1669-x |
Ejemplares similares
-
Comparative analysis of anti-viral transcriptomics reveals novel effects of influenza immune antagonism
por: Thakar, Juilee, et al.
Publicado: (2015) -
Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm
por: Chen, Liang, et al.
Publicado: (2020) -
Algorithms for fuzzy clustering: methods in c-means clustering with applications
por: Miyamoto, Sadaaki, et al.
Publicado: (2008) -
Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means
por: Afzal, Asif, et al.
Publicado: (2021) -
Clustering models for hospitals in Jakarta using fuzzy c-means and k-means
por: Setiawan, Karli Eka, et al.
Publicado: (2023)