Cargando…

Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania

BACKGROUND: Anopheles arabiensis feed on cattle and contributes to residual transmission of malaria in areas with high coverage of long-lasting insecticide-treated nets and indoor residual spraying in East Africa. This study aimed to evaluate the effects of ivermectin-treated cattle as a complementa...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyimo, Issa N., Kessy, Stella T., Mbina, Kasian F., Daraja, Ally A., Mnyone, Ladslaus L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461717/
https://www.ncbi.nlm.nih.gov/pubmed/28587669
http://dx.doi.org/10.1186/s12936-017-1885-x
Descripción
Sumario:BACKGROUND: Anopheles arabiensis feed on cattle and contributes to residual transmission of malaria in areas with high coverage of long-lasting insecticide-treated nets and indoor residual spraying in East Africa. This study aimed to evaluate the effects of ivermectin-treated cattle as a complementary vector control tool against population of An. arabiensis under the semi-field conditions in south-eastern Tanzania. METHODS: The free-living population of An. arabiensis was allowed to forage on untreated or ivermectin-treated cattle in alternating nights within the semi-field system in south-eastern Tanzania. Fresh blood fed mosquitoes were collected in the morning using mouth aspirators and assessed for their blood meal digestion, egg production, and survivorship. The residual activity of ivermectin-treated cattle was also determined by exposing mosquitoes to the same treatments after every 2 days until day 21 post-treatments. These experiments were replicated 3 times using different individual cattle. RESULTS: Overall, the ivermectin-treated cattle reduced blood meal digestion in the stomach of An. arabiensis, and their subsequent egg production and survival over time. The ivermectin-treated cattle halved blood meal digestion in mosquitoes, but reduced their egg production for up to 15 days. The ivermectin-treated cattle reduced the survival, and median survival times (1–3 days) of An. arabiensis than control cattle. The daily mortality rates of mosquitoes fed on ivermectin-treated cattle increased by five-fold relative to controls in the first week, and it gradually declined up to 21 days after treatment. CONCLUSION: This study demonstrates that long-lasting effects of ivermectin-treated cattle on egg production and survival of An. arabiensis may sustainably suppress their vector density, and reduce residual transmission of malaria. This study suggests that ivermectin-treated non-lactating cattle (i.e. calves, heifers and bulls) could be suitable option for large-scale malaria vector control without limiting consumption of milk and meat by communities in rural settings. Furthermore, simulation models are underway to predict the impact of ivermectin-treated cattle alone, or in combination with LLIN/IRS, the frequency of treatment, and their coverage required to significantly suppress population of An. arabiensis and reduce residual transmission of malaria.