Cargando…
Parallel pathways in the biosynthesis of aminoglycoside antibiotics
Despite their inherent toxicity and the global spread of bacterial resistance, aminoglycosides (AGs), an old class of microbial drugs, remain a valuable component of the antibiotic arsenal. Recent studies have continued to reveal the fascinating biochemistry of AG biosynthesis and the rich potential...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461906/ https://www.ncbi.nlm.nih.gov/pubmed/28620453 http://dx.doi.org/10.12688/f1000research.11104.1 |
Sumario: | Despite their inherent toxicity and the global spread of bacterial resistance, aminoglycosides (AGs), an old class of microbial drugs, remain a valuable component of the antibiotic arsenal. Recent studies have continued to reveal the fascinating biochemistry of AG biosynthesis and the rich potential in their pathway engineering. In particular, parallel pathways have been shown to be common and widespread in AG biosynthesis, highlighting nature’s ingenuity in accessing diverse natural products from a limited set of genes. In this review, we discuss the parallel biosynthetic pathways of three representative AG antibiotics—kanamycin, gentamicin, and apramycin—as well as future directions towards the discovery and development of novel AGs. |
---|