Cargando…
Predicting Outcomes of Hormone and Chemotherapy in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by Biochemically-inspired Machine Learning
Genomic aberrations and gene expression-defined subtypes in the large METABRIC patient cohort have been used to stratify and predict survival. The present study used normalized gene expression signatures of paclitaxel drug response to predict outcome for different survival times in METABRIC patients...
Autores principales: | Mucaki, Eliseos J., Baranova, Katherina, Pham, Huy Q., Rezaeian, Iman, Angelov, Dimo, Ngom, Alioune, Rueda, Luis, Rogan, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461908/ https://www.ncbi.nlm.nih.gov/pubmed/28620450 http://dx.doi.org/10.12688/f1000research.9417.3 |
Ejemplares similares
-
Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning
por: Zhao, Jonathan Z.L., et al.
Publicado: (2018) -
Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning
por: Mucaki, Eliseos J., et al.
Publicado: (2019) -
Computationally repurposing drugs for breast cancer subtypes using a network-based approach
por: Firoozbakht, Forough, et al.
Publicado: (2022) -
Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis
por: Caminsky, Natasha, et al.
Publicado: (2014) -
Discovery and validation of information theory-based transcription factor and cofactor binding site motifs
por: Lu, Ruipeng, et al.
Publicado: (2017)