Cargando…
The shallow water equation and the vorticity equation for a change in height of the topography
We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent a...
Autores principales: | Da, ChaoJiu, Shen, BingLu, Yan, PengCheng, Ma, DeShan, Song, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462354/ https://www.ncbi.nlm.nih.gov/pubmed/28591129 http://dx.doi.org/10.1371/journal.pone.0178184 |
Ejemplares similares
-
Detection of a sudden change of the field time series based on the Lorenz system
por: Da, ChaoJiu, et al.
Publicado: (2017) -
The numerical solution of the vorticity transport equation
por: Dennis, S C R
Publicado: (1973) -
Solving global shallow water equations on heterogeneous supercomputers
por: Fu, Haohuan, et al.
Publicado: (2017) -
Equations of motion for weakly compressible point vortices
por: Llewellyn Smith, Stefan G., et al.
Publicado: (2022) -
A kinetic flux vector splitting scheme for shallow water equations incorporating variable bottom topography and horizontal temperature gradients
por: Saleem, M. Rehan, et al.
Publicado: (2018)