Cargando…
Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach
Terror events can cause profound consequences for the whole society. Finding out the regularity of terrorist attacks has important meaning for the global counter-terrorism strategy. In the present study, we demonstrate a novel method using relatively popular and robust machine learning methods to si...
Autores principales: | Ding, Fangyu, Ge, Quansheng, Jiang, Dong, Fu, Jingying, Hao, Mengmeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462416/ https://www.ncbi.nlm.nih.gov/pubmed/28591138 http://dx.doi.org/10.1371/journal.pone.0179057 |
Ejemplares similares
-
Mapping the Potential Global Codling Moth (Cydia pomonella L.) Distribution Based on a Machine Learning Method
por: Jiang, Dong, et al.
Publicado: (2018) -
An integrated deep-learning and multi-level framework for understanding the behavior of terrorist groups
por: Jiang, Dong, et al.
Publicado: (2023) -
Modelling armed conflict risk under climate change with machine learning and time-series data
por: Ge, Quansheng, et al.
Publicado: (2022) -
Simulating the Linkages Between Economy and Armed Conflict in India With a Long Short‐Term Memory Algorithm
por: Hao, Mengmeng, et al.
Publicado: (2020) -
The dynamic nature of student discipline and discipline disparities
por: Darling-Hammond, Sean, et al.
Publicado: (2023)