Cargando…

Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats

The unfolded protein response (UPR) plays a critical role in cell death mediated by ischemia/reperfusion (I/R) injury. However, little is known about the exact mechanism of UPR signaling pathways after myocardial I/R injury in rats. An attempt was therefore made to assess whether the myocardial I/R...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chengcheng, Tang, Yi, Li, Yanming, Xie, Liang, Zhuang, Wei, Liu, Jing, Gong, Jianbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462470/
https://www.ncbi.nlm.nih.gov/pubmed/28591178
http://dx.doi.org/10.1371/journal.pone.0179042
Descripción
Sumario:The unfolded protein response (UPR) plays a critical role in cell death mediated by ischemia/reperfusion (I/R) injury. However, little is known about the exact mechanism of UPR signaling pathways after myocardial I/R injury in rats. An attempt was therefore made to assess whether the myocardial I/R induced UPR, and which branch of UPR (ATF6, IRE1 and PERK) signal pathway was activated. Sprague-Dawley rats were pretreated with UPR stimulator dithiothreitol (DTT) and UPR inhibitor 4-phenylbutyrate (4PBA) and then subjected to myocardial I/R surgery. Compared with sham-operated group, the expression of GRP78, ATF6, CHOP and sXBP1 in the I/R injured group is significantly increased at transcript and protein levels, which indicated that all the three signal pathways of UPR were activated in the myocardial I/R injury. Compared with the I/R injured group, treatment with 4PBA effectively decreased myocardium infarct size, reduced myocardial apoptosis, down-regulated caspase-12 expression, diminished serum creatine kinase and lactate dehydrogenase levels. In contrast, these effects were reversed in DTT treated group. In summary, these results demonstrated that myocardial I/R injury activates UPR and inhibiting cell UPR possesses a cardioprotective effect through the suppression of ER stress-induced apoptosis. Therefore, inhibition of UPR might be used as a therapeutic target during myocardial I/R injury.