Cargando…
Lung Cancer Pathological Image Analysis Using a Hidden Potts Model
Nowadays, many biological data are acquired via images. In this article, we study the pathological images scanned from 205 patients with lung cancer with the goal to find out the relationship between the survival time and the spatial distribution of different types of cells, including lymphocyte, st...
Autores principales: | Li, Qianyun, Yi, Faliu, Wang, Tao, Xiao, Guanghua, Liang, Faming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462552/ https://www.ncbi.nlm.nih.gov/pubmed/28615918 http://dx.doi.org/10.1177/1176935117711910 |
Ejemplares similares
-
Remote homology search with hidden Potts models
por: Wilburn, Grey W., et al.
Publicado: (2020) -
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks
por: Yi, Faliu, et al.
Publicado: (2018) -
Pott's Disease; Its Pathology and Treatment
Publicado: (1880) -
Automatic extraction of cell nuclei from H&E-stained histopathological images
por: Yi, Faliu, et al.
Publicado: (2017) -
ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network
por: Wang, Shidan, et al.
Publicado: (2019)