Cargando…
Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality
Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior informat...
Autores principales: | Yang, Guanxue, Wang, Lin, Wang, Xiaofan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462833/ https://www.ncbi.nlm.nih.gov/pubmed/28592807 http://dx.doi.org/10.1038/s41598-017-02762-5 |
Ejemplares similares
-
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality
por: Wu, G, et al.
Publicado: (2013) -
Description length guided nonlinear unified Granger causality analysis
por: Li, Fei, et al.
Publicado: (2023) -
Identifying the pulsed neuron networks’ structures by a nonlinear Granger causality method
por: Zhu, Mei-jia, et al.
Publicado: (2020) -
Detecting interaction networks in the human microbiome with conditional Granger causality
por: Mainali, Kumar, et al.
Publicado: (2019)