Cargando…
Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model
The objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bovine cartilage explants. Both...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC546287/ https://www.ncbi.nlm.nih.gov/pubmed/15380046 http://dx.doi.org/10.1186/ar1216 |
Sumario: | The objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bovine cartilage explants. Both discs and annulus were either treated for 24 hours with 0.1% hyaluronidase followed by 24 hours with 10 U/ml collagenase or left untreated (controls). Discs and annulus were reassembled and implanted subcutaneously in nude mice for 5 weeks. Integration of disc with surrounding cartilage was assessed histologically and tested biomechanically by performing a push-out test. After 5 weeks a significant increase in viable cell counts was seen in wound edges of the enzyme-treated group as compared with controls. Furthermore, matrix integration (expressed as a percentage of the total interface length that was connected; mean ± standard error) was 83 ± 15% in the treated samples versus 44 ± 40% in the untreated controls. In the enzyme-treated group only, picro-Sirius Red staining revealed collagen crossing the interface perpendicular to the wound surface. Immunohistochemical analyses demonstrated that the interface tissue contained cartilage-specific collagen type II. Collagen type I was found only in a small region of fibrous tissue at the level of the superficial layer, and collagen type III was completely absent in both groups. A significant difference in interfacial strength was found using the push-out test: 1.32 ± 0.15 MPa in the enzyme-treated group versus 0.84 ± 0.14 MPa in the untreated controls. The study shows that enzyme treatment of cartilage wounds increases histological integration and improves biomechanical bonding strength. Enzymatic treatment may represent a promising addition to current techniques for articular cartilage repair. |
---|