Cargando…
Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification
We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of multi-instance learning (MIL). After image enhancement and segmentation, concentric circle is used to extract the global and local features for improving the accuracy in diagnos...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5463197/ https://www.ncbi.nlm.nih.gov/pubmed/28690670 http://dx.doi.org/10.1155/2017/7894705 |
_version_ | 1783242664813002752 |
---|---|
author | Bing, Lu Wang, Wei |
author_facet | Bing, Lu Wang, Wei |
author_sort | Bing, Lu |
collection | PubMed |
description | We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of multi-instance learning (MIL). After image enhancement and segmentation, concentric circle is used to extract the global and local features for improving the accuracy in diagnosis and prediction. The classification problem of ultrasound image is converted to sparse representation based MIL problem. Each instance of a bag is represented as a sparse linear combination of all basis vectors in the dictionary, and then the bag is represented by one feature vector which is obtained via sparse representations of all instances within the bag. The sparse and MIL problem is further converted to a conventional learning problem that is solved by relevance vector machine (RVM). Results of single classifiers are combined to be used for classification. Experimental results on the breast cancer datasets demonstrate the superiority of the proposed method in terms of classification accuracy as compared with state-of-the-art MIL methods. |
format | Online Article Text |
id | pubmed-5463197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-54631972017-07-09 Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification Bing, Lu Wang, Wei Comput Math Methods Med Research Article We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of multi-instance learning (MIL). After image enhancement and segmentation, concentric circle is used to extract the global and local features for improving the accuracy in diagnosis and prediction. The classification problem of ultrasound image is converted to sparse representation based MIL problem. Each instance of a bag is represented as a sparse linear combination of all basis vectors in the dictionary, and then the bag is represented by one feature vector which is obtained via sparse representations of all instances within the bag. The sparse and MIL problem is further converted to a conventional learning problem that is solved by relevance vector machine (RVM). Results of single classifiers are combined to be used for classification. Experimental results on the breast cancer datasets demonstrate the superiority of the proposed method in terms of classification accuracy as compared with state-of-the-art MIL methods. Hindawi 2017 2017-05-25 /pmc/articles/PMC5463197/ /pubmed/28690670 http://dx.doi.org/10.1155/2017/7894705 Text en Copyright © 2017 Lu Bing and Wei Wang. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bing, Lu Wang, Wei Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification |
title | Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification |
title_full | Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification |
title_fullStr | Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification |
title_full_unstemmed | Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification |
title_short | Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification |
title_sort | sparse representation based multi-instance learning for breast ultrasound image classification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5463197/ https://www.ncbi.nlm.nih.gov/pubmed/28690670 http://dx.doi.org/10.1155/2017/7894705 |
work_keys_str_mv | AT binglu sparserepresentationbasedmultiinstancelearningforbreastultrasoundimageclassification AT wangwei sparserepresentationbasedmultiinstancelearningforbreastultrasoundimageclassification |