Cargando…
Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification
We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of multi-instance learning (MIL). After image enhancement and segmentation, concentric circle is used to extract the global and local features for improving the accuracy in diagnos...
Autores principales: | Bing, Lu, Wang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5463197/ https://www.ncbi.nlm.nih.gov/pubmed/28690670 http://dx.doi.org/10.1155/2017/7894705 |
Ejemplares similares
-
Augmenting Multi-Instance Multilabel Learning with Sparse Bayesian Models for Skin Biopsy Image Analysis
por: Zhang, Gang, et al.
Publicado: (2014) -
Automated skin biopsy histopathological image annotation using multi-instance representation and learning
por: Zhang, Gang, et al.
Publicado: (2013) -
Sparse Representation-Based Discriminative Metric Learning for Brain MRI Image Retrieval
por: Zhou, Guohua, et al.
Publicado: (2022) -
Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
An efficient classification method based on principal component and sparse representation
por: Zhai, Lin, et al.
Publicado: (2016)