Cargando…

Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome

BACKGROUND: Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ethridge, Lauren E., White, Stormi P., Mosconi, Matthew W., Wang, Jun, Pedapati, Ernest V., Erickson, Craig A., Byerly, Matthew J., Sweeney, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5463459/
https://www.ncbi.nlm.nih.gov/pubmed/28596820
http://dx.doi.org/10.1186/s13229-017-0140-1
Descripción
Sumario:BACKGROUND: Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigated functional properties of auditory cortex using a sensory entrainment task in FXS. METHODS: EEG recordings were obtained from 17 adolescents and adults with FXS and 17 age- and sex-matched healthy controls. Participants heard an auditory chirp stimulus generated using a 1000-Hz tone that was amplitude modulated by a sinusoid linearly increasing in frequency from 0–100 Hz over 2 s. RESULTS: Single trial time-frequency analyses revealed decreased gamma band phase-locking to the chirp stimulus in FXS, which was strongly coupled with broadband increases in gamma power. Abnormalities in gamma phase-locking and power were also associated with theta-gamma amplitude-amplitude coupling during the pre-stimulus period and with parent reports of heightened sensory sensitivities and social communication deficits. CONCLUSIONS: This represents the first demonstration of neural entrainment alterations in FXS patients and suggests that fast-spiking interneurons regulating synchronous high-frequency neural activity have reduced functionality. This reduced ability to synchronize high-frequency neural activity was related to the total power of background gamma band activity. These observations extend findings from fmr1 KO models of FXS, characterize a core pathophysiological aspect of FXS, and may provide a translational biomarker strategy for evaluating promising therapeutics. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-017-0140-1) contains supplementary material, which is available to authorized users.