Cargando…

Time-Aware Service Ranking Prediction in the Internet of Things Environment

With the rapid development of the Internet of things (IoT), building IoT systems with high quality of service (QoS) has become an urgent requirement in both academia and industry. During the procedures of building IoT systems, QoS-aware service selection is an important concern, which requires the r...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yuze, Huang, Jiwei, Cheng, Bo, He, Shuqing, Chen, Junliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464686/
https://www.ncbi.nlm.nih.gov/pubmed/28448451
http://dx.doi.org/10.3390/s17050974
Descripción
Sumario:With the rapid development of the Internet of things (IoT), building IoT systems with high quality of service (QoS) has become an urgent requirement in both academia and industry. During the procedures of building IoT systems, QoS-aware service selection is an important concern, which requires the ranking of a set of functionally similar services according to their QoS values. In reality, however, it is quite expensive and even impractical to evaluate all geographically-dispersed IoT services at a single client to obtain such a ranking. Nevertheless, distributed measurement and ranking aggregation have to deal with the high dynamics of QoS values and the inconsistency of partial rankings. To address these challenges, we propose a time-aware service ranking prediction approach named TSRPred for obtaining the global ranking from the collection of partial rankings. Specifically, a pairwise comparison model is constructed to describe the relationships between different services, where the partial rankings are obtained by time series forecasting on QoS values. The comparisons of IoT services are formulated by random walks, and thus, the global ranking can be obtained by sorting the steady-state probabilities of the underlying Markov chain. Finally, the efficacy of TSRPred is validated by simulation experiments based on large-scale real-world datasets.