Cargando…

Universal fragment descriptors for predicting properties of inorganic crystals

Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is c...

Descripción completa

Detalles Bibliográficos
Autores principales: Isayev, Olexandr, Oses, Corey, Toher, Cormac, Gossett, Eric, Curtarolo, Stefano, Tropsha, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465371/
https://www.ncbi.nlm.nih.gov/pubmed/28580961
http://dx.doi.org/10.1038/ncomms15679
_version_ 1783242929167400960
author Isayev, Olexandr
Oses, Corey
Toher, Cormac
Gossett, Eric
Curtarolo, Stefano
Tropsha, Alexander
author_facet Isayev, Olexandr
Oses, Corey
Toher, Cormac
Gossett, Eric
Curtarolo, Stefano
Tropsha, Alexander
author_sort Isayev, Olexandr
collection PubMed
description Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.
format Online
Article
Text
id pubmed-5465371
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54653712017-06-22 Universal fragment descriptors for predicting properties of inorganic crystals Isayev, Olexandr Oses, Corey Toher, Cormac Gossett, Eric Curtarolo, Stefano Tropsha, Alexander Nat Commun Article Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules. Nature Publishing Group 2017-06-05 /pmc/articles/PMC5465371/ /pubmed/28580961 http://dx.doi.org/10.1038/ncomms15679 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Isayev, Olexandr
Oses, Corey
Toher, Cormac
Gossett, Eric
Curtarolo, Stefano
Tropsha, Alexander
Universal fragment descriptors for predicting properties of inorganic crystals
title Universal fragment descriptors for predicting properties of inorganic crystals
title_full Universal fragment descriptors for predicting properties of inorganic crystals
title_fullStr Universal fragment descriptors for predicting properties of inorganic crystals
title_full_unstemmed Universal fragment descriptors for predicting properties of inorganic crystals
title_short Universal fragment descriptors for predicting properties of inorganic crystals
title_sort universal fragment descriptors for predicting properties of inorganic crystals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465371/
https://www.ncbi.nlm.nih.gov/pubmed/28580961
http://dx.doi.org/10.1038/ncomms15679
work_keys_str_mv AT isayevolexandr universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT osescorey universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT tohercormac universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT gossetteric universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT curtarolostefano universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT tropshaalexander universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals