Cargando…
Universal fragment descriptors for predicting properties of inorganic crystals
Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is c...
Autores principales: | Isayev, Olexandr, Oses, Corey, Toher, Cormac, Gossett, Eric, Curtarolo, Stefano, Tropsha, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465371/ https://www.ncbi.nlm.nih.gov/pubmed/28580961 http://dx.doi.org/10.1038/ncomms15679 |
Ejemplares similares
-
High-entropy high-hardness metal carbides discovered by entropy descriptors
por: Sarker, Pranab, et al.
Publicado: (2018) -
Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases
por: Perim, Eric, et al.
Publicado: (2016) -
Plasmonic high-entropy carbides
por: Calzolari, Arrigo, et al.
Publicado: (2022) -
Deep reinforcement learning for de novo drug design
por: Popova, Mariya, et al.
Publicado: (2018) -
Charting the complete elastic properties of inorganic crystalline compounds
por: de Jong, Maarten, et al.
Publicado: (2015)