Cargando…
Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting
BACKGROUND: Smartphones contain sensors that measure movement-related data, making them promising tools for monitoring physical activity after a stroke. Activity recognition (AR) systems are typically trained on movement data from healthy individuals collected in a laboratory setting. However, movem...
Autores principales: | O'Brien, Megan K, Shawen, Nicholas, Mummidisetty, Chaithanya K, Kaur, Saninder, Bo, Xiao, Poellabauer, Christian, Kording, Konrad, Jayaraman, Arun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465379/ https://www.ncbi.nlm.nih.gov/pubmed/28546137 http://dx.doi.org/10.2196/jmir.7385 |
Ejemplares similares
-
Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
Addendum of: Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls
por: Harari, Yaar, et al.
Publicado: (2021) -
Fall Classification by Machine Learning Using Mobile Phones
por: Albert, Mark V., et al.
Publicado: (2012) -
Combining Accelerometer and GPS Features to Evaluate Community Mobility in Knee Ankle Foot Orthoses (KAFO) Users
por: Lonini, Luca, et al.
Publicado: (2021)