Cargando…
Data-driven prediction of adverse drug reactions induced by drug-drug interactions
BACKGROUND: The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR repo...
Autores principales: | Liu, Ruifeng, AbdulHameed, Mohamed Diwan M., Kumar, Kamal, Yu, Xueping, Wallqvist, Anders, Reifman, Jaques |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465578/ https://www.ncbi.nlm.nih.gov/pubmed/28595649 http://dx.doi.org/10.1186/s40360-017-0153-6 |
Ejemplares similares
-
Exploiting large-scale drug-protein interaction information for computational drug repurposing
por: Liu, Ruifeng, et al.
Publicado: (2014) -
Data-driven identification of structural alerts for mitigating the risk of drug-induced human liver injuries
por: Liu, Ruifeng, et al.
Publicado: (2015) -
Mining Public Toxicogenomic Data Reveals Insights and Challenges in Delineating Liver Steatosis Adverse Outcome Pathways
por: AbdulHameed, Mohamed Diwan M., et al.
Publicado: (2019) -
Teaching an Old Dog New Tricks: Strategies That Improve Early Recognition in Similarity-Based Virtual Screening
por: Liu, Ruifeng, et al.
Publicado: (2019) -
Using a Graph Convolutional
Neural Network Model to
Identify Bile Salt Export Pump Inhibitors
por: AbdulHameed, Mohamed Diwan M., et al.
Publicado: (2023)