Cargando…
The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults
One apparent consequence of aging appears to be loss of some aspects of cognitive control. This loss is measurable as early as mid-adulthood. Since, like many aspects of cognition, there is wide variance among individuals, it is possible that behavior, such as one’s diet, could drive some of these d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465972/ https://www.ncbi.nlm.nih.gov/pubmed/28649198 http://dx.doi.org/10.3389/fnagi.2017.00183 |
_version_ | 1783243015134904320 |
---|---|
author | Walk, Anne M. Edwards, Caitlyn G. Baumgartner, Nicholas W. Chojnacki, Morgan R. Covello, Alicia R. Reeser, Ginger E. Hammond, Billy R. Renzi-Hammond, Lisa M. Khan, Naiman A. |
author_facet | Walk, Anne M. Edwards, Caitlyn G. Baumgartner, Nicholas W. Chojnacki, Morgan R. Covello, Alicia R. Reeser, Ginger E. Hammond, Billy R. Renzi-Hammond, Lisa M. Khan, Naiman A. |
author_sort | Walk, Anne M. |
collection | PubMed |
description | One apparent consequence of aging appears to be loss of some aspects of cognitive control. This loss is measurable as early as mid-adulthood. Since, like many aspects of cognition, there is wide variance among individuals, it is possible that behavior, such as one’s diet, could drive some of these differences. For instance, past data on older humans and non-human primates have suggested that dietary carotenoids could slow cognitive decline. In this study, we tested how early such protection might manifest by examining a sample (n = 60) of 25–45 year olds. Carotenoid status was assessed by directly measuring macular pigment optical density (MPOD) which has shown to be highly correlated with the primary carotenoid in brain, lutein. Cognitive control was measured using event-related potentials during the performance of cognitive control tasks designed to tap into different aspects of attentional (i.e., selective attention, attentional inhibition, and response inhibition) control. Our results showed that, across participants, MPOD was related to both age and the P3 component of participants’ neuroelectric profile (P3 amplitude) for attentional, but not response, inhibition. Although younger adults exhibited larger P3 amplitudes than their older adult counterparts, older subjects with higher MPOD levels displayed P3 indices similar to their younger adult counterparts in amplitude. Furthermore, hierarchical regression analyses showed that age was no longer a significant predictor of P3 amplitude when MPOD was included as a predictor in the model, suggesting that MPOD may partially contribute to the relationship between age and P3 amplitude. In addition, age and MPOD were shown to have independent associations with intraindividual variability of attentional control, such that younger individuals and individuals with higher MPOD showed less intraindividual variability. These results show a relationship between retinal carotenoids and neuroelectric indices underlying cognitive control. The protective role of carotenoids within the CNS may be evident during early and middle adulthood, decades prior to the onset of older age. |
format | Online Article Text |
id | pubmed-5465972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54659722017-06-23 The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults Walk, Anne M. Edwards, Caitlyn G. Baumgartner, Nicholas W. Chojnacki, Morgan R. Covello, Alicia R. Reeser, Ginger E. Hammond, Billy R. Renzi-Hammond, Lisa M. Khan, Naiman A. Front Aging Neurosci Neuroscience One apparent consequence of aging appears to be loss of some aspects of cognitive control. This loss is measurable as early as mid-adulthood. Since, like many aspects of cognition, there is wide variance among individuals, it is possible that behavior, such as one’s diet, could drive some of these differences. For instance, past data on older humans and non-human primates have suggested that dietary carotenoids could slow cognitive decline. In this study, we tested how early such protection might manifest by examining a sample (n = 60) of 25–45 year olds. Carotenoid status was assessed by directly measuring macular pigment optical density (MPOD) which has shown to be highly correlated with the primary carotenoid in brain, lutein. Cognitive control was measured using event-related potentials during the performance of cognitive control tasks designed to tap into different aspects of attentional (i.e., selective attention, attentional inhibition, and response inhibition) control. Our results showed that, across participants, MPOD was related to both age and the P3 component of participants’ neuroelectric profile (P3 amplitude) for attentional, but not response, inhibition. Although younger adults exhibited larger P3 amplitudes than their older adult counterparts, older subjects with higher MPOD levels displayed P3 indices similar to their younger adult counterparts in amplitude. Furthermore, hierarchical regression analyses showed that age was no longer a significant predictor of P3 amplitude when MPOD was included as a predictor in the model, suggesting that MPOD may partially contribute to the relationship between age and P3 amplitude. In addition, age and MPOD were shown to have independent associations with intraindividual variability of attentional control, such that younger individuals and individuals with higher MPOD showed less intraindividual variability. These results show a relationship between retinal carotenoids and neuroelectric indices underlying cognitive control. The protective role of carotenoids within the CNS may be evident during early and middle adulthood, decades prior to the onset of older age. Frontiers Media S.A. 2017-06-09 /pmc/articles/PMC5465972/ /pubmed/28649198 http://dx.doi.org/10.3389/fnagi.2017.00183 Text en Copyright © 2017 Walk, Edwards, Baumgartner, Chojnacki, Covello, Reeser, Hammond, Renzi-Hammond and Khan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Walk, Anne M. Edwards, Caitlyn G. Baumgartner, Nicholas W. Chojnacki, Morgan R. Covello, Alicia R. Reeser, Ginger E. Hammond, Billy R. Renzi-Hammond, Lisa M. Khan, Naiman A. The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults |
title | The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults |
title_full | The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults |
title_fullStr | The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults |
title_full_unstemmed | The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults |
title_short | The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among Early to Middle-Aged Adults |
title_sort | role of retinal carotenoids and age on neuroelectric indices of attentional control among early to middle-aged adults |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465972/ https://www.ncbi.nlm.nih.gov/pubmed/28649198 http://dx.doi.org/10.3389/fnagi.2017.00183 |
work_keys_str_mv | AT walkannem theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT edwardscaitlyng theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT baumgartnernicholasw theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT chojnackimorganr theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT covelloaliciar theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT reesergingere theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT hammondbillyr theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT renzihammondlisam theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT khannaimana theroleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT walkannem roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT edwardscaitlyng roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT baumgartnernicholasw roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT chojnackimorganr roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT covelloaliciar roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT reesergingere roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT hammondbillyr roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT renzihammondlisam roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults AT khannaimana roleofretinalcarotenoidsandageonneuroelectricindicesofattentionalcontrolamongearlytomiddleagedadults |