Cargando…

Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network

Carbon’s unique ability to have both sp(2) and sp(3) bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp(2)-h...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Meng, He, Julong, Zhao, Zhisheng, Strobel, Timothy A., Hu, Wentao, Yu, Dongli, Sun, Hao, Liu, Lingyu, Li, Zihe, Ma, Mengdong, Kono, Yoshio, Shu, Jinfu, Mao, Ho-kwang, Fei, Yingwei, Shen, Guoyin, Wang, Yanbin, Juhl, Stephen J., Huang, Jian Yu, Liu, Zhongyuan, Xu, Bo, Tian, Yongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466369/
https://www.ncbi.nlm.nih.gov/pubmed/28630918
http://dx.doi.org/10.1126/sciadv.1603213
_version_ 1783243084409077760
author Hu, Meng
He, Julong
Zhao, Zhisheng
Strobel, Timothy A.
Hu, Wentao
Yu, Dongli
Sun, Hao
Liu, Lingyu
Li, Zihe
Ma, Mengdong
Kono, Yoshio
Shu, Jinfu
Mao, Ho-kwang
Fei, Yingwei
Shen, Guoyin
Wang, Yanbin
Juhl, Stephen J.
Huang, Jian Yu
Liu, Zhongyuan
Xu, Bo
Tian, Yongjun
author_facet Hu, Meng
He, Julong
Zhao, Zhisheng
Strobel, Timothy A.
Hu, Wentao
Yu, Dongli
Sun, Hao
Liu, Lingyu
Li, Zihe
Ma, Mengdong
Kono, Yoshio
Shu, Jinfu
Mao, Ho-kwang
Fei, Yingwei
Shen, Guoyin
Wang, Yanbin
Juhl, Stephen J.
Huang, Jian Yu
Liu, Zhongyuan
Xu, Bo
Tian, Yongjun
author_sort Hu, Meng
collection PubMed
description Carbon’s unique ability to have both sp(2) and sp(3) bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp(2)-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp(3) nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths—more than two times that of commonly used ceramics—and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties.
format Online
Article
Text
id pubmed-5466369
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-54663692017-06-19 Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network Hu, Meng He, Julong Zhao, Zhisheng Strobel, Timothy A. Hu, Wentao Yu, Dongli Sun, Hao Liu, Lingyu Li, Zihe Ma, Mengdong Kono, Yoshio Shu, Jinfu Mao, Ho-kwang Fei, Yingwei Shen, Guoyin Wang, Yanbin Juhl, Stephen J. Huang, Jian Yu Liu, Zhongyuan Xu, Bo Tian, Yongjun Sci Adv Research Articles Carbon’s unique ability to have both sp(2) and sp(3) bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp(2)-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp(3) nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths—more than two times that of commonly used ceramics—and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties. American Association for the Advancement of Science 2017-06-09 /pmc/articles/PMC5466369/ /pubmed/28630918 http://dx.doi.org/10.1126/sciadv.1603213 Text en Copyright © 2017, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Hu, Meng
He, Julong
Zhao, Zhisheng
Strobel, Timothy A.
Hu, Wentao
Yu, Dongli
Sun, Hao
Liu, Lingyu
Li, Zihe
Ma, Mengdong
Kono, Yoshio
Shu, Jinfu
Mao, Ho-kwang
Fei, Yingwei
Shen, Guoyin
Wang, Yanbin
Juhl, Stephen J.
Huang, Jian Yu
Liu, Zhongyuan
Xu, Bo
Tian, Yongjun
Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
title Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
title_full Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
title_fullStr Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
title_full_unstemmed Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
title_short Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
title_sort compressed glassy carbon: an ultrastrong and elastic interpenetrating graphene network
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466369/
https://www.ncbi.nlm.nih.gov/pubmed/28630918
http://dx.doi.org/10.1126/sciadv.1603213
work_keys_str_mv AT humeng compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT hejulong compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT zhaozhisheng compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT strobeltimothya compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT huwentao compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT yudongli compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT sunhao compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT liulingyu compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT lizihe compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT mamengdong compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT konoyoshio compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT shujinfu compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT maohokwang compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT feiyingwei compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT shenguoyin compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT wangyanbin compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT juhlstephenj compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT huangjianyu compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT liuzhongyuan compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT xubo compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork
AT tianyongjun compressedglassycarbonanultrastrongandelasticinterpenetratinggraphenenetwork