Cargando…
Impact of Carboxyl Groups in Graphene Oxide on Chemoselective Alcohol Oxidation with Ultra-Low Carbocatalyst Loading
A highly efficient and simple chemoselective aerobic oxidation of primary alcohols to either aldehydes or carboxylic acids in the presence of nitric acid was developed, utilising 5 wt% graphene oxide as a carbocatalyst under ambient reaction conditions. Carboxylic acid functional groups on graphene...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466679/ https://www.ncbi.nlm.nih.gov/pubmed/28600548 http://dx.doi.org/10.1038/s41598-017-03468-4 |
Sumario: | A highly efficient and simple chemoselective aerobic oxidation of primary alcohols to either aldehydes or carboxylic acids in the presence of nitric acid was developed, utilising 5 wt% graphene oxide as a carbocatalyst under ambient reaction conditions. Carboxylic acid functional groups on graphene oxides played a vital role in carbocatalyst activity, greatly influencing both the reactivity and selectivity. We also applied this protocol to a variant of the Knoevenagel condensation for primary alcohols and malonates with a secondary amine co-catalyst via cooperative catalysis. |
---|