Cargando…
A Rapid Segmentation-Insensitive “Digital Biopsy” Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non–Small Cell Lung Cancer
Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called “digital biopsy,” that allows for the collection of intensity- and texture-based featu...
Autores principales: | Echegaray, Sebastian, Nair, Viswam, Kadoch, Michael, Leung, Ann, Rubin, Daniel, Gevaert, Olivier, Napel, Sandy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466872/ https://www.ncbi.nlm.nih.gov/pubmed/28612050 http://dx.doi.org/10.18383/j.tom.2016.00163 |
Ejemplares similares
-
[18F] FDG Positron Emission Tomography (PET) Tumor and Penumbra Imaging Features Predict Recurrence in Non–Small Cell Lung Cancer
por: Mattonen, Sarah A., et al.
Publicado: (2019) -
Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative (18)F FDG-PET/CT metrics
por: Minamimoto, Ryogo, et al.
Publicado: (2017) -
Stanford DRO Toolkit: Digital Reference Objects for Standardization of Radiomic Features
por: Jaggi, Akshay, et al.
Publicado: (2020) -
A radiogenomic dataset of non-small cell lung cancer
por: Bakr, Shaimaa, et al.
Publicado: (2018) -
Non–Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications
por: Zhou, Mu, et al.
Publicado: (2018)