Cargando…

Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas

Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polarito...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfaro-Mozaz, F. J., Alonso-González, P., Vélez, S., Dolado, I., Autore, M., Mastel, S., Casanova, F., Hueso, L. E., Li, P., Nikitin, A. Y., Hillenbrand, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467227/
https://www.ncbi.nlm.nih.gov/pubmed/28589941
http://dx.doi.org/10.1038/ncomms15624
_version_ 1783243227043725312
author Alfaro-Mozaz, F. J.
Alonso-González, P.
Vélez, S.
Dolado, I.
Autore, M.
Mastel, S.
Casanova, F.
Hueso, L. E.
Li, P.
Nikitin, A. Y.
Hillenbrand, R.
author_facet Alfaro-Mozaz, F. J.
Alonso-González, P.
Vélez, S.
Dolado, I.
Autore, M.
Mastel, S.
Casanova, F.
Hueso, L. E.
Li, P.
Nikitin, A. Y.
Hillenbrand, R.
author_sort Alfaro-Mozaz, F. J.
collection PubMed
description Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials.
format Online
Article
Text
id pubmed-5467227
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54672272017-06-19 Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas Alfaro-Mozaz, F. J. Alonso-González, P. Vélez, S. Dolado, I. Autore, M. Mastel, S. Casanova, F. Hueso, L. E. Li, P. Nikitin, A. Y. Hillenbrand, R. Nat Commun Article Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. Nature Publishing Group 2017-06-07 /pmc/articles/PMC5467227/ /pubmed/28589941 http://dx.doi.org/10.1038/ncomms15624 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Alfaro-Mozaz, F. J.
Alonso-González, P.
Vélez, S.
Dolado, I.
Autore, M.
Mastel, S.
Casanova, F.
Hueso, L. E.
Li, P.
Nikitin, A. Y.
Hillenbrand, R.
Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
title Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
title_full Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
title_fullStr Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
title_full_unstemmed Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
title_short Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
title_sort nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467227/
https://www.ncbi.nlm.nih.gov/pubmed/28589941
http://dx.doi.org/10.1038/ncomms15624
work_keys_str_mv AT alfaromozazfj nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT alonsogonzalezp nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT velezs nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT doladoi nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT autorem nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT mastels nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT casanovaf nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT huesole nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT lip nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT nikitinay nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas
AT hillenbrandr nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas