Cargando…
Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polarito...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467227/ https://www.ncbi.nlm.nih.gov/pubmed/28589941 http://dx.doi.org/10.1038/ncomms15624 |
_version_ | 1783243227043725312 |
---|---|
author | Alfaro-Mozaz, F. J. Alonso-González, P. Vélez, S. Dolado, I. Autore, M. Mastel, S. Casanova, F. Hueso, L. E. Li, P. Nikitin, A. Y. Hillenbrand, R. |
author_facet | Alfaro-Mozaz, F. J. Alonso-González, P. Vélez, S. Dolado, I. Autore, M. Mastel, S. Casanova, F. Hueso, L. E. Li, P. Nikitin, A. Y. Hillenbrand, R. |
author_sort | Alfaro-Mozaz, F. J. |
collection | PubMed |
description | Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. |
format | Online Article Text |
id | pubmed-5467227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-54672272017-06-19 Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas Alfaro-Mozaz, F. J. Alonso-González, P. Vélez, S. Dolado, I. Autore, M. Mastel, S. Casanova, F. Hueso, L. E. Li, P. Nikitin, A. Y. Hillenbrand, R. Nat Commun Article Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. Nature Publishing Group 2017-06-07 /pmc/articles/PMC5467227/ /pubmed/28589941 http://dx.doi.org/10.1038/ncomms15624 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Alfaro-Mozaz, F. J. Alonso-González, P. Vélez, S. Dolado, I. Autore, M. Mastel, S. Casanova, F. Hueso, L. E. Li, P. Nikitin, A. Y. Hillenbrand, R. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas |
title | Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas |
title_full | Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas |
title_fullStr | Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas |
title_full_unstemmed | Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas |
title_short | Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas |
title_sort | nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467227/ https://www.ncbi.nlm.nih.gov/pubmed/28589941 http://dx.doi.org/10.1038/ncomms15624 |
work_keys_str_mv | AT alfaromozazfj nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT alonsogonzalezp nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT velezs nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT doladoi nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT autorem nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT mastels nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT casanovaf nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT huesole nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT lip nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT nikitinay nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas AT hillenbrandr nanoimagingofresonatinghyperbolicpolaritonsinlinearboronnitrideantennas |