Cargando…
CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks
Many structural variations (SVs) detection methods have been proposed due to the popularization of next-generation sequencing (NGS). These SV calling methods use different SV-property-dependent features; however, they all suffer from poor accuracy when running on low coverage sequences. The union of...
Autores principales: | Wang, Jing, Ling, Cheng, Gao, Jingyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467383/ https://www.ncbi.nlm.nih.gov/pubmed/28630866 http://dx.doi.org/10.1155/2017/6375059 |
Ejemplares similares
-
DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network
por: Cai, Lei, et al.
Publicado: (2019) -
An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data
por: Zhang, Jin, et al.
Publicado: (2012) -
Data-driven emergence of convolutional structure in neural networks
por: Ingrosso, Alessandro, et al.
Publicado: (2022) -
Accurate Tumor Segmentation via Octave Convolution Neural Network
por: Wang, Bo, et al.
Publicado: (2021) -
Detecting Respiratory Pathologies Using Convolutional Neural Networks and Variational Autoencoders for Unbalancing Data
por: García-Ordás, María Teresa, et al.
Publicado: (2020)