Cargando…

Chemical-induced disease relation extraction via convolutional neural network

This article describes our work on the BioCreative-V chemical–disease relation (CDR) extraction task, which employed a maximum entropy (ME) model and a convolutional neural network model for relation extraction at inter- and intra-sentence level, respectively. In our work, relation extraction betwee...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Jinghang, Sun, Fuqing, Qian, Longhua, Zhou, Guodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467558/
https://www.ncbi.nlm.nih.gov/pubmed/28415073
http://dx.doi.org/10.1093/database/bax024
Descripción
Sumario:This article describes our work on the BioCreative-V chemical–disease relation (CDR) extraction task, which employed a maximum entropy (ME) model and a convolutional neural network model for relation extraction at inter- and intra-sentence level, respectively. In our work, relation extraction between entity concepts in documents was simplified to relation extraction between entity mentions. We first constructed pairs of chemical and disease mentions as relation instances for training and testing stages, then we trained and applied the ME model and the convolutional neural network model for inter- and intra-sentence level, respectively. Finally, we merged the classification results from mention level to document level to acquire the final relations between chemical and disease concepts. The evaluation on the BioCreative-V CDR corpus shows the effectiveness of our proposed approach. Database URL: http://www.biocreative.org/resources/corpora/biocreative-v-cdr-corpus/