Cargando…
Chemical-induced disease relation extraction via convolutional neural network
This article describes our work on the BioCreative-V chemical–disease relation (CDR) extraction task, which employed a maximum entropy (ME) model and a convolutional neural network model for relation extraction at inter- and intra-sentence level, respectively. In our work, relation extraction betwee...
Autores principales: | Gu, Jinghang, Sun, Fuqing, Qian, Longhua, Zhou, Guodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467558/ https://www.ncbi.nlm.nih.gov/pubmed/28415073 http://dx.doi.org/10.1093/database/bax024 |
Ejemplares similares
-
Chemical-induced disease relation extraction via attention-based distant supervision
por: Gu, Jinghang, et al.
Publicado: (2019) -
Chemical-induced disease relation extraction with various linguistic features
por: Gu, Jinghang, et al.
Publicado: (2016) -
Extraction of causal relations based on SBEL and BERT model
por: Shao, Yifan, et al.
Publicado: (2021) -
Chemical-induced disease extraction via recurrent piecewise convolutional neural networks
por: Li, Haodi, et al.
Publicado: (2018) -
Multi-probe attention neural network for COVID-19 semantic indexing
por: Gu, Jinghang, et al.
Publicado: (2022)