Cargando…

Sparse EEG/MEG source estimation via a group lasso

Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sour...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Michael, Ales, Justin M., Cottereau, Benoit R., Hastie, Trevor, Norcia, Anthony M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467834/
https://www.ncbi.nlm.nih.gov/pubmed/28604790
http://dx.doi.org/10.1371/journal.pone.0176835
_version_ 1783243325315219456
author Lim, Michael
Ales, Justin M.
Cottereau, Benoit R.
Hastie, Trevor
Norcia, Anthony M.
author_facet Lim, Michael
Ales, Justin M.
Cottereau, Benoit R.
Hastie, Trevor
Norcia, Anthony M.
author_sort Lim, Michael
collection PubMed
description Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ(2) minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches.
format Online
Article
Text
id pubmed-5467834
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-54678342017-06-22 Sparse EEG/MEG source estimation via a group lasso Lim, Michael Ales, Justin M. Cottereau, Benoit R. Hastie, Trevor Norcia, Anthony M. PLoS One Research Article Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ(2) minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches. Public Library of Science 2017-06-12 /pmc/articles/PMC5467834/ /pubmed/28604790 http://dx.doi.org/10.1371/journal.pone.0176835 Text en © 2017 Lim et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lim, Michael
Ales, Justin M.
Cottereau, Benoit R.
Hastie, Trevor
Norcia, Anthony M.
Sparse EEG/MEG source estimation via a group lasso
title Sparse EEG/MEG source estimation via a group lasso
title_full Sparse EEG/MEG source estimation via a group lasso
title_fullStr Sparse EEG/MEG source estimation via a group lasso
title_full_unstemmed Sparse EEG/MEG source estimation via a group lasso
title_short Sparse EEG/MEG source estimation via a group lasso
title_sort sparse eeg/meg source estimation via a group lasso
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467834/
https://www.ncbi.nlm.nih.gov/pubmed/28604790
http://dx.doi.org/10.1371/journal.pone.0176835
work_keys_str_mv AT limmichael sparseeegmegsourceestimationviaagrouplasso
AT alesjustinm sparseeegmegsourceestimationviaagrouplasso
AT cottereaubenoitr sparseeegmegsourceestimationviaagrouplasso
AT hastietrevor sparseeegmegsourceestimationviaagrouplasso
AT norciaanthonym sparseeegmegsourceestimationviaagrouplasso