Cargando…

Spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy

We introduce a kind of the spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy, which carries the orbital angular momentum and can rotate in the transverse. The n–th mode of the spiraling elliptic Hermite-Gaussian solitons has n holes nested in the elliptic pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Guo, Dai, Zhiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468243/
https://www.ncbi.nlm.nih.gov/pubmed/28607465
http://dx.doi.org/10.1038/s41598-017-03669-x
Descripción
Sumario:We introduce a kind of the spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy, which carries the orbital angular momentum and can rotate in the transverse. The n–th mode of the spiraling elliptic Hermite-Gaussian solitons has n holes nested in the elliptic profile. The analytical spiraling elliptic Hermite-Gaussian solitons solutions are obtained based on the variational approach, which agree well with the numerical simulations. It is found that the critical power and the critical angular velocity for the spiraling elliptic Hermite-Gaussian solitons are the same as the counterpart of the ground mode.