Cargando…

Neuropilin-1 Associated Molecules in the Blood Distinguish Poor Prognosis Breast Cancer: A Cross-Sectional Study

Circulating plasma and peripheral blood mononuclear (PBMCs) cells provide an informative snapshot of the systemic physiological state. Moreover, they provide a non-invasively accessible compartment to identify biomarkers for personalized medicine in advanced breast cancer. The role of Neuropilin-1 (...

Descripción completa

Detalles Bibliográficos
Autores principales: Naik, Adviti, Al-Zeheimi, Noura, Bakheit, Charles Saki, Al Riyami, Marwa, Al Jarrah, Adil, Al Moundhri, Mansour S., Al Habsi, Zamzam, Basheer, Maysoon, Adham, Sirin A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468252/
https://www.ncbi.nlm.nih.gov/pubmed/28607365
http://dx.doi.org/10.1038/s41598-017-03280-0
Descripción
Sumario:Circulating plasma and peripheral blood mononuclear (PBMCs) cells provide an informative snapshot of the systemic physiological state. Moreover, they provide a non-invasively accessible compartment to identify biomarkers for personalized medicine in advanced breast cancer. The role of Neuropilin-1 (NRP-1) and its interacting molecules in breast tumor tissue was correlated with cancer progression; however, the clinical impact of their systemic levels was not extensively evaluated. In this cross-sectional study, we found that circulating and tumor tissue expression of NRP-1 and circulating placental growth factor (PlGF) increase in advanced nodal and metastatic breast cancer compared with locally advanced disease. Tumor tissue expression of NRP-1 and PlGF is also upregulated in triple negative breast cancer (TNBC) compared to other subtypes. Conversely, in PBMCs, NRP-1 and its interacting molecules SEMA4A and SNAI1 are significantly downregulated in breast cancer patients compared to healthy controls, indicating a protective role. Moreover, we report differential PBMC expression profiles that correlate inversely with disease stage (SEMA4A, SNAI1, PLXNA1 and VEGFR3) and can differentiate between the TNBC and non-TNBC tumor subtypes (VEGFR3 and PLXNA1). This work supports the importance of NRP-1-associated molecules in circulation to characterize poor prognosis breast cancer and emphasizes on their role as favorable drug targets.