Cargando…
Multistability and Long-Timescale Transients Encoded by Network Structure in a Model of C. elegans Connectome Dynamics
The neural dynamics of the nematode Caenorhabditis elegans are experimentally low-dimensional and may be understood as long-timescale transitions between multiple low-dimensional attractors. Previous modeling work has found that dynamic models of the worm's full neuronal network are capable of...
Autores principales: | Kunert-Graf, James M., Shlizerman, Eli, Walker, Andrew, Kutz, J. Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468412/ https://www.ncbi.nlm.nih.gov/pubmed/28659783 http://dx.doi.org/10.3389/fncom.2017.00053 |
Ejemplares similares
-
Investigating dynamical properties of the Caenorhabditis elegans connectome through full-network simulations
por: Kunert, James, et al.
Publicado: (2013) -
Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe
por: Shlizerman, Eli, et al.
Publicado: (2014) -
Functionality and Robustness of Injured Connectomic Dynamics in C. elegans: Linking Behavioral Deficits to Neural Circuit Damage
por: Kunert, James M., et al.
Publicado: (2017) -
Statistical Perspective on Functional and Causal Neural Connectomics: A Comparative Study
por: Biswas, Rahul, et al.
Publicado: (2022) -
Spatiotemporal Feedback and Network Structure Drive and Encode Caenorhabditis elegans Locomotion
por: Kunert, James M., et al.
Publicado: (2017)