Cargando…

Functional metal–organic framework boosting lithium metal anode performance via chemical interactions

Dendrite growth and low coulombic efficiency are two major factors that limit the utilization of Li metal electrodes in future generations of high-energy-density rechargeable batteries. This article reports the first study on metal–organic framework (MOF) materials for boosting the electrochemical p...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Wen, Mi, Yingying, Weng, Zhe, Zhong, Yiren, Wu, Zishan, Wang, Hailiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468994/
https://www.ncbi.nlm.nih.gov/pubmed/28626566
http://dx.doi.org/10.1039/c7sc00668c
_version_ 1783243498684678144
author Liu, Wen
Mi, Yingying
Weng, Zhe
Zhong, Yiren
Wu, Zishan
Wang, Hailiang
author_facet Liu, Wen
Mi, Yingying
Weng, Zhe
Zhong, Yiren
Wu, Zishan
Wang, Hailiang
author_sort Liu, Wen
collection PubMed
description Dendrite growth and low coulombic efficiency are two major factors that limit the utilization of Li metal electrodes in future generations of high-energy-density rechargeable batteries. This article reports the first study on metal–organic framework (MOF) materials for boosting the electrochemical performance of Li metal electrodes and demonstrates the power of molecular-structure functionalization for realizing desirable ion transport and Li metal nucleation and growth. We show that dendrite-free dense Li deposition and stable Li plating/stripping cycling with high coulombic efficiency are enabled by modifying a commercial polypropylene separator with a titanium-based MOF (NH(2)-MIL-125(Ti)) material. The NH(2)-MIL-125(Ti)-coated-separator renders Li|Cu cells that can run for over 200 cycles at 1 mA cm(–2)–1 mA h cm(–2) with average coulombic efficiency of 98.5% and Li|Li symmetric cells that can be cycled at 1 mA cm(–2)–1 mA h cm(–2) for more than 1200 h without short circuiting. The superior cycling stability is attributed to the amine substituents in the NH(2)-MIL-125(Ti) structure which induce increased Li(+) transference numbers and uniform and dense early-stage Li deposition.
format Online
Article
Text
id pubmed-5468994
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-54689942017-06-16 Functional metal–organic framework boosting lithium metal anode performance via chemical interactions Liu, Wen Mi, Yingying Weng, Zhe Zhong, Yiren Wu, Zishan Wang, Hailiang Chem Sci Chemistry Dendrite growth and low coulombic efficiency are two major factors that limit the utilization of Li metal electrodes in future generations of high-energy-density rechargeable batteries. This article reports the first study on metal–organic framework (MOF) materials for boosting the electrochemical performance of Li metal electrodes and demonstrates the power of molecular-structure functionalization for realizing desirable ion transport and Li metal nucleation and growth. We show that dendrite-free dense Li deposition and stable Li plating/stripping cycling with high coulombic efficiency are enabled by modifying a commercial polypropylene separator with a titanium-based MOF (NH(2)-MIL-125(Ti)) material. The NH(2)-MIL-125(Ti)-coated-separator renders Li|Cu cells that can run for over 200 cycles at 1 mA cm(–2)–1 mA h cm(–2) with average coulombic efficiency of 98.5% and Li|Li symmetric cells that can be cycled at 1 mA cm(–2)–1 mA h cm(–2) for more than 1200 h without short circuiting. The superior cycling stability is attributed to the amine substituents in the NH(2)-MIL-125(Ti) structure which induce increased Li(+) transference numbers and uniform and dense early-stage Li deposition. Royal Society of Chemistry 2017-06-01 2017-04-18 /pmc/articles/PMC5468994/ /pubmed/28626566 http://dx.doi.org/10.1039/c7sc00668c Text en This journal is © The Royal Society of Chemistry 2017 http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Chemistry
Liu, Wen
Mi, Yingying
Weng, Zhe
Zhong, Yiren
Wu, Zishan
Wang, Hailiang
Functional metal–organic framework boosting lithium metal anode performance via chemical interactions
title Functional metal–organic framework boosting lithium metal anode performance via chemical interactions
title_full Functional metal–organic framework boosting lithium metal anode performance via chemical interactions
title_fullStr Functional metal–organic framework boosting lithium metal anode performance via chemical interactions
title_full_unstemmed Functional metal–organic framework boosting lithium metal anode performance via chemical interactions
title_short Functional metal–organic framework boosting lithium metal anode performance via chemical interactions
title_sort functional metal–organic framework boosting lithium metal anode performance via chemical interactions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468994/
https://www.ncbi.nlm.nih.gov/pubmed/28626566
http://dx.doi.org/10.1039/c7sc00668c
work_keys_str_mv AT liuwen functionalmetalorganicframeworkboostinglithiummetalanodeperformanceviachemicalinteractions
AT miyingying functionalmetalorganicframeworkboostinglithiummetalanodeperformanceviachemicalinteractions
AT wengzhe functionalmetalorganicframeworkboostinglithiummetalanodeperformanceviachemicalinteractions
AT zhongyiren functionalmetalorganicframeworkboostinglithiummetalanodeperformanceviachemicalinteractions
AT wuzishan functionalmetalorganicframeworkboostinglithiummetalanodeperformanceviachemicalinteractions
AT wanghailiang functionalmetalorganicframeworkboostinglithiummetalanodeperformanceviachemicalinteractions