Cargando…

Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida

BACKGROUND: The importance of the cervical vertebrae as part of the skull–neck system in facilitating the success and diversity of tetrapods is clear. The reconstruction of its evolution, however, is problematic because of the variation in the number of vertebrae, making it difficult to identify hom...

Descripción completa

Detalles Bibliográficos
Autor principal: Böhmer, Christine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469011/
https://www.ncbi.nlm.nih.gov/pubmed/28630745
http://dx.doi.org/10.1186/s40851-017-0069-4
_version_ 1783243502496251904
author Böhmer, Christine
author_facet Böhmer, Christine
author_sort Böhmer, Christine
collection PubMed
description BACKGROUND: The importance of the cervical vertebrae as part of the skull–neck system in facilitating the success and diversity of tetrapods is clear. The reconstruction of its evolution, however, is problematic because of the variation in the number of vertebrae, making it difficult to identify homologous elements. Quantification of the morphological differentiation in the neck of diverse archosaurs established homologous units of vertebrae (i.e. modules) resulting from Hox gene expression patterns within the cervical vertebral column. The present study aims to investigate the modularity of the cervical vertebral column in the mouse and to reveal the genetic patterns and changes underlying the evolution of the neck of modern mammals and their extinct relatives. In contrast to modern mammals, non-mammalian synapsids are characterized by a variable cervical count, the presence of free cervical ribs and the presence of a separate CV1 centrum. How might these evolutionary modifications be associated with changes in the Hox code? RESULTS: In combination with up-to-date information on cervical Hox gene expression including description of the vertebral phenotype of Hox knock-out mutants, the 3D landmark-based geometric morphometric approach demonstrates a correlation between Hox code and vertebral morphology in the mouse. There is evidence that the modularity of the neck of the mouse had already been established in the last common ancestor of mammals, but differed from that of non-mammalian synapsids. The differences that likely occurred during the evolution of synapsids include an anterior shift in HoxA-5 expression in relation to the reduction of cervical ribs and an anterior shift in HoxD-4 expression linked to the development of the highly differentiated atlas-axis complex, whereas the remaining Hox genes may have displayed a pattern similar to that in mammals on the basis of the high level of conservatism in the axial skeleton of this lineage. CONCLUSION: Thus, the mouse Hox code provides a model for understanding the evolutionary mechanisms responsible for the great morphological adaptability of the cervical vertebral column in Synapsida. However, more studies in non-model organisms are required to further elucidate the evolutionary role of Hox genes in axial patterning of the unique mammalian body plan.
format Online
Article
Text
id pubmed-5469011
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-54690112017-06-19 Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida Böhmer, Christine Zoological Lett Research Article BACKGROUND: The importance of the cervical vertebrae as part of the skull–neck system in facilitating the success and diversity of tetrapods is clear. The reconstruction of its evolution, however, is problematic because of the variation in the number of vertebrae, making it difficult to identify homologous elements. Quantification of the morphological differentiation in the neck of diverse archosaurs established homologous units of vertebrae (i.e. modules) resulting from Hox gene expression patterns within the cervical vertebral column. The present study aims to investigate the modularity of the cervical vertebral column in the mouse and to reveal the genetic patterns and changes underlying the evolution of the neck of modern mammals and their extinct relatives. In contrast to modern mammals, non-mammalian synapsids are characterized by a variable cervical count, the presence of free cervical ribs and the presence of a separate CV1 centrum. How might these evolutionary modifications be associated with changes in the Hox code? RESULTS: In combination with up-to-date information on cervical Hox gene expression including description of the vertebral phenotype of Hox knock-out mutants, the 3D landmark-based geometric morphometric approach demonstrates a correlation between Hox code and vertebral morphology in the mouse. There is evidence that the modularity of the neck of the mouse had already been established in the last common ancestor of mammals, but differed from that of non-mammalian synapsids. The differences that likely occurred during the evolution of synapsids include an anterior shift in HoxA-5 expression in relation to the reduction of cervical ribs and an anterior shift in HoxD-4 expression linked to the development of the highly differentiated atlas-axis complex, whereas the remaining Hox genes may have displayed a pattern similar to that in mammals on the basis of the high level of conservatism in the axial skeleton of this lineage. CONCLUSION: Thus, the mouse Hox code provides a model for understanding the evolutionary mechanisms responsible for the great morphological adaptability of the cervical vertebral column in Synapsida. However, more studies in non-model organisms are required to further elucidate the evolutionary role of Hox genes in axial patterning of the unique mammalian body plan. BioMed Central 2017-06-13 /pmc/articles/PMC5469011/ /pubmed/28630745 http://dx.doi.org/10.1186/s40851-017-0069-4 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Böhmer, Christine
Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida
title Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida
title_full Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida
title_fullStr Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida
title_full_unstemmed Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida
title_short Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida
title_sort correlation between hox code and vertebral morphology in the mouse: towards a universal model for synapsida
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469011/
https://www.ncbi.nlm.nih.gov/pubmed/28630745
http://dx.doi.org/10.1186/s40851-017-0069-4
work_keys_str_mv AT bohmerchristine correlationbetweenhoxcodeandvertebralmorphologyinthemousetowardsauniversalmodelforsynapsida