Cargando…

Shifting brucellosis risk in livestock coincides with spreading seroprevalence in elk

Tracking and preventing the spillover of disease from wildlife to livestock can be difficult when rare outbreaks occur across large landscapes. In these cases, broad scale ecological studies could help identify risk factors and patterns of risk to inform management and reduce incidence of disease. B...

Descripción completa

Detalles Bibliográficos
Autores principales: Brennan, Angela, Cross, Paul C., Portacci, Katie, Scurlock, Brandon M., Edwards, William H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469469/
https://www.ncbi.nlm.nih.gov/pubmed/28609437
http://dx.doi.org/10.1371/journal.pone.0178780
Descripción
Sumario:Tracking and preventing the spillover of disease from wildlife to livestock can be difficult when rare outbreaks occur across large landscapes. In these cases, broad scale ecological studies could help identify risk factors and patterns of risk to inform management and reduce incidence of disease. Between 2002 and 2014, 21 livestock herds in the Greater Yellowstone Area (GYA) were affected by brucellosis, a bacterial disease caused by Brucella abortus, while no affected herds were detected between 1990 and 2001. Using a Bayesian analysis, we examined several ecological covariates that may be associated with affected livestock herds across the region. We showed that livestock risk has been increasing over time and expanding outward from the historical nexus of brucellosis in wild elk on Wyoming’s feeding grounds where elk are supplementally fed during the winter. Although elk were the presumed source of cattle infections, occurrences of affected livestock herds were only weakly associated with the density of seropositive elk across the GYA. However, the shift in livestock risk did coincide with recent increases in brucellosis seroprevalence in unfed elk populations. As increasing brucellosis in unfed elk likely stemmed from high levels of the disease in fed elk, disease-related costs of feeding elk have probably been incurred across the entire GYA, rather than solely around the feeding grounds. Our results suggest that focused disease mitigation in areas where seroprevalence in unfed elk is high could reduce the spillover of brucellosis to livestock. We also highlight the need to better understand the epidemiology of spillover events with detailed histories of disease testing, calving, and movement of infected livestock. Finally, we recommend using case-control studies to investigate local factors important to livestock risk.