Cargando…
A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition
Electroencephalography (EEG)-based emotion recognition is an important element in psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always non-stationary if they are sampled from different experimental sessions or subjects. This results in the deterioration of...
Autores principales: | Chai, Xin, Wang, Qisong, Zhao, Yongping, Li, Yongqiang, Liu, Dan, Liu, Xin, Bai, Ou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469537/ https://www.ncbi.nlm.nih.gov/pubmed/28467371 http://dx.doi.org/10.3390/s17051014 |
Ejemplares similares
-
Multi-subject subspace alignment for non-stationary EEG-based emotion recognition
por: Chai, Xin, et al.
Publicado: (2018) -
Multi-Source and Multi-Representation Adaptation for Cross-Domain Electroencephalography Emotion Recognition
por: Cao, Jiangsheng, et al.
Publicado: (2022) -
Multi-source joint domain adaptation for cross-subject and cross-session emotion recognition from electroencephalography
por: Liang, Shengjin, et al.
Publicado: (2022) -
Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Cross-Sensory EEG Emotion Recognition with Filter Bank Riemannian Feature and Adversarial Domain Adaptation
por: Gao, Chenguang, et al.
Publicado: (2023)