Cargando…
Unsupervised Machine Learning for Developing Personalised Behaviour Models Using Activity Data
The goal of this study is to address two major issues that undermine the large scale deployment of smart home sensing solutions in people’s homes. These include the costs associated with having to install and maintain a large number of sensors, and the pragmatics of annotating numerous sensor data s...
Autores principales: | Fiorini, Laura, Cavallo, Filippo, Dario, Paolo, Eavis, Alexandra, Caleb-Solly, Praminda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469639/ https://www.ncbi.nlm.nih.gov/pubmed/28471405 http://dx.doi.org/10.3390/s17051034 |
Ejemplares similares
-
Correction: Fiorini, L., et al., Unsupervised Machine Learning for Developing Personalised Behaviour Models Using Activity Data. Sensors 2017, 17, 1034
por: Fiorini, Laura, et al.
Publicado: (2019) -
Interaction and Engagement with an Anxiety Management App: Analysis Using Large-Scale Behavioral Data
por: Matthews, Paul, et al.
Publicado: (2018) -
A Study on the Effects of Cognitive Overloading and Distractions on Human Movement During Robot-Assisted Dressing
por: Camilleri, Antonella, et al.
Publicado: (2022) -
Safety Assessment Review of a Dressing Assistance Robot
por: Delgado Bellamy, Daniel, et al.
Publicado: (2021) -
Assessing the Role of Gaze Tracking in Optimizing Humans-In-The-Loop Telerobotic Operation Using Multimodal Feedback
por: Bolarinwa, Joseph, et al.
Publicado: (2021)