Cargando…
Interaction of PKR with single-stranded RNA
Although the antiviral kinase PKR was originally characterized as a double-stranded RNA activated enzyme it can be stimulated by RNAs containing limited secondary structure. Single-stranded regions in such RNAs contribute to binding and activation but the mechanism is not understood. Here, we demons...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469796/ https://www.ncbi.nlm.nih.gov/pubmed/28611419 http://dx.doi.org/10.1038/s41598-017-03047-7 |
Sumario: | Although the antiviral kinase PKR was originally characterized as a double-stranded RNA activated enzyme it can be stimulated by RNAs containing limited secondary structure. Single-stranded regions in such RNAs contribute to binding and activation but the mechanism is not understood. Here, we demonstrate that single-stranded RNAs bind to PKR with micromolar dissociation constants and can induce activation. Addition of a 5′-triphosphate slightly enhances binding affinity. Single-stranded RNAs also activate PKR constructs lacking the double-stranded RNA binding domain and bind to a basic region adjacent to the N-terminus of the kinase. However, the isolated kinase is not activated by and does not bind single-stranded RNA. Photocrosslinking measurements demonstrate that that the basic region interacts with RNA in the context of full length PKR. We propose that bivalent interactions with the double stranded RNA binding domain and the basic region underlie the ability of RNAs containing limited structure to activate PKR by enhancing binding affinity and thereby increasing the population of productive complexes containing two PKRs bound to a single RNA. |
---|