Cargando…
Changes in the microbial community during bioremediation of gasoline-contaminated soil
We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fert...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470457/ https://www.ncbi.nlm.nih.gov/pubmed/28034596 http://dx.doi.org/10.1016/j.bjm.2016.10.018 |
_version_ | 1783243770884521984 |
---|---|
author | Leal, Aline Jaime Rodrigues, Edmo Montes Leal, Patrícia Lopes Júlio, Aline Daniela Lopes Fernandes, Rita de Cássia Rocha Borges, Arnaldo Chaer Tótola, Marcos Rogério |
author_facet | Leal, Aline Jaime Rodrigues, Edmo Montes Leal, Patrícia Lopes Júlio, Aline Daniela Lopes Fernandes, Rita de Cássia Rocha Borges, Arnaldo Chaer Tótola, Marcos Rogério |
author_sort | Leal, Aline Jaime |
collection | PubMed |
description | We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO(2) emission from soil. CO(2) emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO(2) emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. |
format | Online Article Text |
id | pubmed-5470457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-54704572017-06-23 Changes in the microbial community during bioremediation of gasoline-contaminated soil Leal, Aline Jaime Rodrigues, Edmo Montes Leal, Patrícia Lopes Júlio, Aline Daniela Lopes Fernandes, Rita de Cássia Rocha Borges, Arnaldo Chaer Tótola, Marcos Rogério Braz J Microbiol Environmental Microbiology We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO(2) emission from soil. CO(2) emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO(2) emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Elsevier 2016-12-19 /pmc/articles/PMC5470457/ /pubmed/28034596 http://dx.doi.org/10.1016/j.bjm.2016.10.018 Text en © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Environmental Microbiology Leal, Aline Jaime Rodrigues, Edmo Montes Leal, Patrícia Lopes Júlio, Aline Daniela Lopes Fernandes, Rita de Cássia Rocha Borges, Arnaldo Chaer Tótola, Marcos Rogério Changes in the microbial community during bioremediation of gasoline-contaminated soil |
title | Changes in the microbial community during bioremediation of gasoline-contaminated soil |
title_full | Changes in the microbial community during bioremediation of gasoline-contaminated soil |
title_fullStr | Changes in the microbial community during bioremediation of gasoline-contaminated soil |
title_full_unstemmed | Changes in the microbial community during bioremediation of gasoline-contaminated soil |
title_short | Changes in the microbial community during bioremediation of gasoline-contaminated soil |
title_sort | changes in the microbial community during bioremediation of gasoline-contaminated soil |
topic | Environmental Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470457/ https://www.ncbi.nlm.nih.gov/pubmed/28034596 http://dx.doi.org/10.1016/j.bjm.2016.10.018 |
work_keys_str_mv | AT lealalinejaime changesinthemicrobialcommunityduringbioremediationofgasolinecontaminatedsoil AT rodriguesedmomontes changesinthemicrobialcommunityduringbioremediationofgasolinecontaminatedsoil AT lealpatricialopes changesinthemicrobialcommunityduringbioremediationofgasolinecontaminatedsoil AT julioalinedanielalopes changesinthemicrobialcommunityduringbioremediationofgasolinecontaminatedsoil AT fernandesritadecassiarocha changesinthemicrobialcommunityduringbioremediationofgasolinecontaminatedsoil AT borgesarnaldochaer changesinthemicrobialcommunityduringbioremediationofgasolinecontaminatedsoil AT totolamarcosrogerio changesinthemicrobialcommunityduringbioremediationofgasolinecontaminatedsoil |