Cargando…

Postmortem succession of gut microbial communities in deceased human subjects

The human microbiome has demonstrated an importance for the health and functioning in living individuals. However, the fate of the microbiome after death is less understood. In addition to a better understanding of microbe-mediated decomposition processes, postmortem succession of human-associated m...

Descripción completa

Detalles Bibliográficos
Autores principales: DeBruyn, Jennifer M., Hauther, Kathleen A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470579/
https://www.ncbi.nlm.nih.gov/pubmed/28626612
http://dx.doi.org/10.7717/peerj.3437
Descripción
Sumario:The human microbiome has demonstrated an importance for the health and functioning in living individuals. However, the fate of the microbiome after death is less understood. In addition to a better understanding of microbe-mediated decomposition processes, postmortem succession of human-associated microbial communities has been suggested as a possible forensic tool for estimating time since death, or postmortem interval (PMI). The objective of our study was to document postmortem changes in human gut bacterial communities. Gut microflora were repeatedly sampled from the caeca of cadavers as they decayed under natural environmental conditions. 16S rRNA gene amplicon sequencing revealed that over time, bacterial richness significantly increased (r(s) = 0.449) while diversity decreased (r(s) =  − 0.701). The composition of gut bacterial communities changed in a similar manner over time towards a common decay community. OTUs belonging to Bacteroidales (Bacteroides, Parabacteroides) significantly declined while Clostridiales (Clostridium, Anaerosphaera) and the fly-associated Gammaproteobacteria Ignatzschineria and Wohlfahrtiimonas increased. Our examination of human caeca microflora in decomposing cadavers adds to the growing literature on postmortem microbial communities, which will ultimately contribute to a better understanding of decomposition processes.