Cargando…
Rigid geometry solves “curse of dimensionality” effects in clustering methods: An application to omics data
The quality of samples preserved long term at ultralow temperatures has not been adequately studied. To improve our understanding, we need a strategy to analyze protein degradation and metabolism at subfreezing temperatures. To do this, we obtained liquid chromatography-mass spectrometry (LC/MS) dat...
Autor principal: | Adachi, Shun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470695/ https://www.ncbi.nlm.nih.gov/pubmed/28614363 http://dx.doi.org/10.1371/journal.pone.0179180 |
Ejemplares similares
-
Correction: Rigid geometry solves “curse of dimensionality” effects in clustering methods: An application to omics data
por: Adachi, Shun
Publicado: (2020) -
Approximate Dynamic Programming: Solving the Curses of Dimensionality
por: Powell, Warren B
Publicado: (2011) -
Could simulation methods solve the curse of sparse data within clinical studies of antibiotic resistance?
por: Hurley, James C, et al.
Publicado: (2021) -
Digital medicine and the curse of dimensionality
por: Berisha, Visar, et al.
Publicado: (2021) -
Robust subspace methods for outlier detection in genomic data circumvents the curse of dimensionality
por: Shetta, Omar, et al.
Publicado: (2020)